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Abstract

The time steps associated with moving mesh methods are proportional to the smallest mesh size in space and as a

result they are very small at each time level. For some practical problems, the physical phenomena develop dynamically

singular or nearly singular solutions in fairly localized regions, and therefore the smallest time step at each time level

occurs only in these localized regions. In this work, we will develop a local time stepping algorithm for the moving mesh

methods. The principal idea will be demonstrated by investigating the nonlinear hyperbolic conservation laws. Nu-

merical experiments are carried out to demonstrate the efficiency and robustness of the proposed methods.
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1. Introduction

In this work, we shall discuss the class of adaptive grid methods often called moving mesh methods (or

dynamic methods – in contrast to the static methods) for solving time dependent PDEs. These methods

involve the solution of the underlying PDE for the physical problem in conjunction with a mesh movement
for the mesh itself. The moving mesh methods have important applications in a variety of physical and

engineering areas such as solid and fluid dynamics, combustion, heat transfer, material science, etc. The

physical phenomena in these areas develop dynamically singular or nearly singular solutions in fairly lo-

calized regions, such as shock waves, boundary layers, detonation waves, etc. In the past two decades, there

have been many efforts in developing efficient moving mesh algorithms, see, e.g., [1,3,7,16,20,28].
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4. Concluding remarks

In this work, a local time stepping technique for moving mesh methods has been developed. The al-
gorithm proposed is relatively simple and has some good properties such as maintaining global conser-

vation and convergence to a weak solution of scalar hyperbolic conservation laws. Numerical experiments

in both 1D and 2D indicate that the local time stepping methods exhibit similar accuracy and stability to

the global time stepping schemes, at a fraction of the computational cost.

It should be pointed out that the moving mesh method used in this paper is not representative of all

moving mesh methods. For example, in the moving mesh PDE (MMPDE) approach of Russell and others

[8,12,18], the physical PDE is solved on a moving mesh, whereas in this work the physical PDE is always

solved on a fixed mesh and the effect of the mesh movement is achieved through the grid restructuring. The
latter approach has been developed and used by several authors recently, see, e.g., [1,2,17,19,28]. One of the

advantages of using this approach is that it delinks the PDE evolution part and the mesh-redistribution part

so that the existing PDE solvers can be employed directly. This approach can also easily keep some desired

properties of the numerical solutions such as mass conservation (in particular in multi-dimensions).

However, the stability restriction on a fixed mesh will be governed by the smallest mesh size and therefore a

local time stepping technique seems necessary for this type of moving mesh methods.
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